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Abstract- Selecting informative genes from microarray gene 
expression data is the most important task while performing data 

analysis on the large amount of data. Mining genes having 
regulatory relations within thousands of genes is essential. To fit 
this need, a number of methods were proposed from various 
points of view. However, most existing methods solely focus on 
gene expression values themselves without using any external 

information of genes. Gene Ontology (GO) provides biological 
information of genes or proteins involved. It utilizes a 
hierarchical structure to give additional biological information of 
genes as the aid for data analysis. In this paper, we first give a 

brief description about the GO structure and give a review of 
existing literatures that take GO into account. Subsequently, we 
propose a novel method to identify regulatory gene pairs in a real 
micro array dataset based on dynamic time warping (DTW) 
algorithm and GO. Finally, we summarize this paper with a 

discussion on how GO can be used to facilitate the analysis of 
micro array gene expression data. 
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I. INTRODUCTION 

Microarray technology is widely used in this decade due to 
the high throughput data it can produce. These huge amounts of 
data are called microarray gene expression data and they 
provide informative meanings for biologists. Microarray gene 
expression data are time-series and matrix-liked that in the 
format of numeric values generated from specific computer 
tools. Each gene expression value in microarray time series 
data means different reaction degrees result from experiments. 
These quantitative values are in the format of logarithm which 
represents distinct intensity of expressions. These kinds of data 
provide a possible means for the inference of transcriptional 
regulatory relationships among the genes on the microarray 
gene chips. The discovery of specific gene pairs with highly
correlated relations could provide valuable information for 
biologists to predict important biological reactions [1]. 

Despite the informative meanings of these data, there 
remains a challenge for the analysis of them. On the one hand, 
biologists can retrieve significant information of genes from 
these data. On the other hand, these large amounts of gene 
expression data raise the need for effective approaches to deal 
with them. Typically, the aim of the analysis on microarray 
time-series data is to observe and find out whether there exists 
any pair of genes that have highly-correlated relations. 

Researches on this issue have been worked for these years, and 
a variety of approaches are proposed. Existing methods are 
generated from various aspects. Common proposed solutions 
include clustering analysis [2-5], spectral analysis [6, 7], 
similarity analysis [8-10], and Bayesian networks [11, 12]. 
Above approaches are applied for the inference and prediction 
of gene-gene relations in microarray time-series data. Although 
some of them may have a success for the analysis of 
microarray time series data, the effectiveness is very limited. 
This is because these methods only take gene expression values 
themselves into consideration and they lack for external or 
biological information of genes. 

Gene ontology (GO) is a hierarchical structure of defined 
annotations for known genes or proteins. It consists of three 
independent domains: molecular function, biological process, 
and cellular component. Each known gene has its own 
annotations or terms that represent for the biological 
characteristic or similarity within the evolution process in terms 
of the three domains. Genes can hence be preprocessed or 
grouped based on GO before we actually deal with gene 
expression values to increase the efficiency. Moreover, 
analyses combining this external information with gene 
expression values can obtain more accurate results than merely 
performing similarity measurement on gene expression values 
[13]. 

In this paper, we first briefly mention about the GO 
structure. Subsequently, we give a review of existing methods 
that use gene ontology as additional information to improve the 
quality of microarray data analysis. We also propose a novel 
method for the prediction of gene regulation relationship based 
on dynamic time warping (DTW) that combines GO structure. 
Finally, we present a discussion on how GO can be applied to 
facilitate microarray gene expression data analysis. 

The remaining of this paper is organized as follows. In 
Section II, GO structure is briefly described. A review of 
methods that utilize GO is discussed in Section III. The 
proposed method that combines DTW and GO is mentioned in 
Section IV. The discussion of experiment results and how GO 
can be used for the analysis of microarray gene expression data 
is given in Section V. The concluding remarks are made in 
Section VI. 
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II. GENE ONTOLOGY 

The gene ontology (GO) is a definition and annotation for 
genes that are known and studied. Each known gene has a 
specific annotation (term) in GO structure within three 
independent domains: molecular function, biological process, 
and cellular component. Terms within three above domains 
consider different aspects respectively. Molecular function 
considers the biological or biochemical activity at the 
molecular level. Biological process can be said as the 
combination of molecular function. It denotes a biological 
objective which genes contribute to. Cellular component 
records the place in cells where a gene product is active. One 
gene may have more than one annotation in each domain. 
Moreover, one gene can have totally different annotations 
while considering different aspects of domain. A gene product 
might be associated with or located in one or more cellular 
components. It is active in one or more biological processes, 
during which it performs one or more molecular functions. 

The structure of GO can be described as a directed acyclic 
graph (DAG), where each GO term is a node, and the 
relationships between the terms are arcs between the nodes. GO 
resembles a hierarchy, as child terms are more specialized and 
parent terms are less specialized. Although GO structure is 
hierarchical, each node in GO can have several parent nodes 
and several children nodes just in case that relations between 
each node do not form a cycle. The most commonly-used 
relations in GO are "is-a" relation and "part of' relation. For 
example, if the relation "term A is a term B" exists in GO, that 
means term A is a subtype of term B. By contrast, if the 
relation "term A is part of term B" stands, it means all children 
terms of term A with term A itself belong to term B. Each term 
in GO has one unique GO id for it, but the number of GO id 
does not represent the similarity between terms. 

Fig. 1 illustrates an example of GO. For example, GO id 
0015749 shown in Fig. 1 denotes a term "monosaccharide 
transport", which has the relation "is-a" with its parent term 
(GO id 0008643). Equally, the parent-children relation between 
terms at consequent levels starting from one specific node can 
be traced level by level to the root node. In Fig. 1, if we start 
from the term GO: 0015749, we can trace the path from the 
selected node to the root as "GO: 0015749->GO: 0008643-
>GO: 000681O->GO: 005 1 234->GO: 0008150". With this 
directed acyclic graph structure, we can easily query the GO 
annotation terms of each gene in microarray gene expression 
time series data to give a general view of the biological 
activities of the genes involved. 

Since each gene may have different terms in the three 
independent domains, deciding which domain we are focusing 
on is hence an important issue. Besides, one gene may be 
annotated by more than one term even in the same domain. 
Moreover, each term can have more than "one-to-one" relation 
with its parent term or children term. Typically, a completed 
tracing path of GO annotation terms for one gene is somehow 
complicated. Therefore, the way how we can use gene ontology 
differs from data themselves and the algorithm we are applying. 
Sometimes it can also depend on the kind of analysis we are 
performing. 

o all: all [372469 gene products] 

o 0 GO:0008150: biological_process [274193 gene products] 

I!l 0 GO:0051234 : establishment of localizabon [32058 gene products] 

I!l 0 GO:0006810: transport [31713 gene products] 

I!l 0 GO:0008643: carbohydrate transport [1121 gene products] 

I!l 0 GO:0015749: monosaccharide transport [435 gene products) 

I!l 0 GO:0051179 : localization [36100 gene products] 

I!l 0 GO:0051234 : establishment of localization (32058 gene products] 

I!l 0 GO:0006810: transport [31713 gene products] 

I!l 0 GO:0008643: carbohydrate transport [1121 gene products] 

I!l 0 GO:0015749 : monosaccharide transport [435 gene products) 

Figure I. Example of Gene Ontology 

With GO tern annotation, each gene can have a uniform 
representation across biological databases. For more 
information about gene ontology, please refer to the Gene 
Ontology website [14]. With GO annotations, we can hence 
acquire the relations for the genes involved in the experiment. 
The related closeness of two genes can be identified if we 
perform some quantitative assessments on the gene pair with 
their GO annotations. Following section mentions about our 
survey of existing methods that take gene ontology into 
consideration. 

III. EXISTING METHODS USING GENE ONTOLOGY 

The main task in microarray gene expression data analysis 
is to identify the gene pairs or groups that are highly co
expressed under individual experimental conditions. The most 
common procedure is performing similarity measurement or 
classification and clustering on gene expression values. 
Nevertheless, with the usage of gene ontology, this task can be 
done more efficiently and accurately. 

To our knowledge, the first literature proposing methods 
that use gene ontology is [13]. In the study, the algorithm 
proposed by the authors first finds the sets of GO ids for the 
pair of genes that are being identified. A table recording the 
tracing path of all terms annotated for the both genes is then 
created. The algorithm calculates the probability of the 
occurrence of each term in the table, and then estimates all the 
parent-children relations of each term in the table to determine 
whether the two genes have common ancestors. If the two 
genes analyzed have shared parent nodes in the GO tracing 
path, they are marked as similar according to a probability 
threshold of occurrence. This study proposes a typical approach 
that combines GO with numeric values processing so that a 
better result is retrieved. 

In [15], GO annotations are regarded as important 
parameters in a determining equation. The authors modify the 
FCM clustering algorithm with some adjustments. In the study, 
if we are going to determine the similarity of one gene with the 
other genes in a cluster, a dichotomy equation is given. This 
equation sets the parameter to 1 if two genes have the same 
annotation, otherwise the parameter will be set to 0 so that it 
influences on the original FCM algorithm. The usage of GO in 
this study is very simple, but it should not just be a dichotomy 
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determination for genes. Difference of levels at which the 
annotation terms locate should be considered. 

Another example of using gene ontology is in [16]. In the 
paper, terms in GO are taken as labels that are capable of 
discriminative power of identifying whether a gene with the 
term is informative. This algorithm first sets a discriminative 
score equation for genes. For each GO term, if genes annotated 
with it are with higher discriminative scores, the term is defined 
as the informative term. Genes that can be annotated with these 
kinds of informative terms are so called informative genes. The 
algorithm uses the GO terms as a probe to determine which 
genes can be said as informative. This paper is based on the 
concept that co-expressed genes should have similar GO 
annotation terms. 

Similar usage of GO is proposed in [17]. In the study, GO 
terms are used as the information content. Semantic closeness 
is defined if the most immediate parent node is shared by two 
annotation terms. The authors also merge various GO-based 
similarity measurement algorithms that consider intra and inter 
ontological relations by translating each relative term into a 
hierarchical relation within a smaller sub-ontology. 

Among existing methods that apply gene ontology to 
discover relative genes or to pre-group genes with known 
similar biological functions, it seems GO does aid in the 
analysis of microarray gene expression data. However, there 
exist several kinds of approaches to the application of gene 
ontology. In the following section, we discuss the usage and 
argue the importance of applying GO correctly. 

IV. GENE REGULATION PREDICTION BASED ON 
DTW AND GO 

Here we propose a method that combines dynamic time 
warping and gene ontology. The proposed method takes both 
gene expression values and external information for the genes 
into consideration. In this section, we briefly introduce the 
dynamic time warping algorithm along with the procedures of 
the proposed method. We also mention about a real microarray 
gene expression time series dataset that we use for our 
experiments. 

A. Dynamic time warping (DTW) 

Dynamic time warping is a commonly-used algorithm 
which was first applied in voice and pattern recognition [18, 
19]. Literatures have been shown that DTW performs well to 
find out the similarity for a pair of time series data [20, 21]. In 
this paper, we combine the DTW algorithm with GO as the 
similarity measurement to identify gene pairs with regulatory 
relations in microarray time-series data. In general, the 
dynamic time warping method is used to warp and match 
generic sequences of numbers that can be viewed as curves in a 
proper coordinate system. The aim of DTW is to obtain a 
precise matching along the temporal axis, and to maximize the 
number of point-wise matches between two time series. The 
alignment of temporal patterns by DTW has traditionally been 
used in the recognition of speech signals. This method is a 
widely-used algorithm for string comparison and for the 
alignment of time series data. If two series with time points are 
given as input, the DTW algorithm can select the best possible 

alignment between them by minimizing a local distance 
between the series points. 

DTW is a recursive algorithm that matches each two-point 
pair from the first element to the last element on input 
sequences. After the table recording all local optimal paths and 
corresponding points is created, a multiple of its last computed 
value returns the DTW distance between the two sequences. 
With DTW mapping method, local similarity can be found as 
the best path within the two comparison sequences. As a result, 
if two genes with similar gene expression values at certain parts 
in microarray time series data are analyzed by DTW, it is more 
precise for similarity measurement because DTW can discover 
their similarity that cannot be identified with other similarity 
measurements such as Pearson correlation coefficient or 
Euclidean distance. 

Therefore, we choose DTW as the similarity measurement 
to preliminarily find the similarity of gene pairs. Usually, the 
points that a DTW path goes through should not be totally 
diagonal in the matrix. Otherwise it would be the same with the 
Euclidean distance and hence makes DTW alignment 
meaningless. If the best warping path between the two input 
sequences is found, local similarity of the two sequences can 
thus be discovered. For more details about the DTW algorithm, 
please see [22]. 

B. Real microarray dataset 

Spellman et al. and Cho et al. provided the yeast microarray 
dataset , [4, 23]. 
The data was obtained for genes of Yeast Saccharomyces 
cerevisiae cells that were collected with four synchronization 
methods: alpha-factor, cdcl5, cdc28, and elutriation [24]. 
These four subsets of the Spellman's dataset contain totally 
6178 gene ORF profiles with their expression values across 
individual amounts of time slots. For example, the alpha subset 
contains 18 time points with seven minutes as the time interval, 
while the cdc28 contains 17 time points with ten minutes as the 
time interval. These four kinds of subsets record the degree of 
gene expression reactions at various experimental time points 
during different phases in cell cycle. 

Filkov et al. reviewed related literatures and collected all 
known gene regulations of alpha and cdc28 subsets in 
Spellman's yeast cell dataset [25]. A database for recording all 
these known gene regulations was also constructed. In our 
evaluation, the known gene regulations recorded in Filkov's 
database are taken as the validation datasets. In the database, 
the number of recorded gene activations and inhibitions for 
alpha subset is 343 and 96 respectively, while for cdc28 subset 
is 469 and 155 accordingly. All these regulations are in the 
format of A (+) B that denotes gene A is an activator that 
activates gene B. Similarly, C (-) D represents an inhibitor gene 
C inhibits gene D. For example, ABFl (+) ACSI is an 
activation regulation with gene ABFl as the activator. 
However, among these regulations recorded in the database, 
there might be a widespread situation that one gene could be 
the activator or inhibitor for more than one genes. For instance, 
gene ABFl stands for the activator for totally eight different 
genes in cdc28 subset. Therefore, the pre-processing of the raw 
data is necessary. First, we parse all regulations of alpha and 
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cdc28 subsets in Filkov's database and retrieve unrepeatable 
involved genes. The parsing result is shown in Table I. 

TABLE I. PARSING RESULT FOR GENE REGULATIONS 

Content 
Dataset No. of No. of No. of Genes Activations Inhibitions Total 

alpha 295 343 96 439 

cdc28 357 466 ISS 621 

After the involved genes are parsed out, the next step is to 
map these hundreds of genes to Spellman's datasets to match 
the corresponding gene expression values. Nevertheless, gene 
names in Filkov's database are denoted as the gene standard 
name, while the gene systematic names are used in Spellman's 
dataset. As a result, a mapping procedure between gene 
standard name and systematic name is required. 

We perform the mapping task with the aid of the reference 
database called the Saccharomyces Genome Database (SGD, 

) [26]. The SGD database acts as 
a platform for biologists to refer and query yeast gene 
information including the gene standard name and systematic 
name. During the process of gene name mapping, we found 
that some of the gene standard name in Filkov's database 
cannot be found in Spellman's dataset due to the different 
naming conventions. For example, the gene systematic name 
for the gene with standard name ST Al cannot be found in the 
SGD database. Consequently, regulations with gene ST Al are 
filtered that causes the decrease of gene activations in cdc28 
subset from 469 to 466. 

Also, we have purified the involved genes with their gene 
expression values and the corresponding gene standard name as 
the implementation dataset for the proposed method. 
Theoretically, the number of pairwise gene combinations for 

alpha subset is C;95 which equals to 43365, and the number of 

pairwise gene combinations for cdc28 subset is C�57 which 

equals to 63546. Eventually, some missing regulations are 
replenished and the final amount of pairwise gene 
combinations for alpha and cdc28 subsets is 43366 and 63548, 
respectively. Known regulations in Filkov's database are 
marked as the validation measurement to estimate the 
correctness of the proposed method. Afterward, we apply the 
proposed method on these gene pairwise combinations and 
count the number of potential regulatory gene pairs we find 
which are also listed in Filkov's database. Regulations of 
activations and inhibitions are summed up separately. The 
results are shown and discussed in Section V. 

C. Method 

Our gene regulation prediction method first calculates the 
DTW distance for all combinations of involved genes. The 
number of gene pairwise combinations of alpha and cdc28 
subsets is 43365 and 63546 respectively. After DTW distances 
for all these combinations are calculated, we then compute the 
mean of all DTW distances. Assume the mean DTW distance 

of alpha subset is DTWmean _alpha, gene pairs with DTW 
distance smaller then DTWmean_alpha are retained and 
recorded. These recorded gene pairs are subsequently 
compared with the validation datasets from Filkov's database . 
Afterward, the number of mapping gene pairs between the 
validation datasets from Filkov's database and gene pairs 
which are identified based on DTW distance is gathered. 
Theoretically, since we suppose DTW distances reflect the 
better similarity measurement for the gene pairs, potential 
regulatory gene pairs should have smaller DTW distances 
compared with the others in all gene pair combinations. This is 
the concept of this procedure. The same operations are 
performed on cdc28 subset, and the number of mapping gene 
pairs of cdc28 subset is also gathered. 

After the number of mapping gene pairs identified with 
DTW distance is gathered, we then add GO information into 
our method. As mentioned in Section II, GO structure gives 
genes or proteins standard annotation terms which are defined 
based on biological functions or attributes for the genes or 
proteins themselves. Therefore, we define a similar relationship 
for a gene pair if the two genes in the pair have GO annotation 
terms in common. However, from the GO website we can only 
find a relative file recording genes which are annotated with 
their corresponding GO terms [27]. To analyze each GO 
annotation term with genes annotated by it, we have to parse 
the annotation file from the GO website and construct a table 
recording the GO annotation terms and the genes annotated by 
these terms. After we construct the table recording annotations 
for the genes, gene products annotated by each GO annotation 
term are grouped. Here we simply make an intuitive 
assumption that genes annotated by the same GO annotation 
terms tend to have similar biological functions or attributes. As 
a result, we take this similarity measurement for the genes to 
supplement potential regulatory gene pairs which are not found 
with DTW distance. Gene pairs identified with GO similarity 
measurement are also compared with the validation database 
from Filkov's database. The number of mapping gene pairs 
between the validation datasets from Filkov's database and the 
gene pairs which are identified with the union of DTW distance 
and GO annotation terms is then gathered to assess the 
effectiveness of our method. The detail algorithm of the 
proposed method is described as follows. 

Algorithm for the proposed method: 

1) For all gene pair combinations, find DTW distance of 

each gene pair, and then calculate the mean DTW 

distance DTWmean of all combinatios. 

2) Record gene pairs with DTW distance smaller than 

DTWmean, assume SDTW. 

3) For all gene pair combinations, record gene pairs with 

more than one GO annotation terms in common, 

assume SGo, 

4) Find the union ofSDTwand SGO, assume U. 

5) Compare U with Filkov's datasets. Count the number of 

mapping gene pairs. 
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V. ExPERIMENTAL RESULTS AND DISCUSSION 

Table II shows the experimental results of our method and 
method from [7]. Activation regulations and inhibition 
regulations from Filkov's database are separated. The four 
subsets lying in the first column denote the known gene 
regulations from Filkov's database. The number of mapping 
gene pairs of the four methods, including Pearson Correlation 
Coefficient (PCC), the method from [7], only DTW similarity 
measurement, and DTW similarity measurement with GO 
information is listed in the corresponding grids of the table. 
Gene pairs are said to be similar if their PCC values are larger 
than 0.5 according to [7]. We can see that PCC can only find 
very few mapping known regulatory gene pairs, while the 
method from [7] gets better then PCC. However, in [7] only 
alpha subset is experimented. Therefore we mark the result of 
cdc28 subset of the method from [7] with NI A. The result of 
only DTW similarity measurement seems to be very similar to 
that of the method from [7]. Obviously, with our method we 
can find much more known regulatory gene pairs compared 
with other methods. In alpha activation regulations, we can 
even find almost 315/343 = 91 % of known regulatory gene 
pairs and 4011469 = 85% of known regulatory gene pairs in 
cdc28 activation regulations. The results show that our method 
is effective. 

TABLE II. NUMBER OF IDENTIFIED REGULATORY GENE PAIRS 

Dataset! Method 
# of Known gene 

pairs pee [7] DTW DTW+GO 

alpha(+)! 
36 223 215 315 

343 

alpha(-)! 
5 55 56 77 

96 

cdc28(+)! 
66 N!A 287 401 

469 

cdc28(-)! 
14 N!A 87 121 

155 

Gene ontology is the well-structured annotation for genes 
concerning the three domains. It provides essential convenience 
for biologists to estimate the closeness among known genes. 
Due to the complicated annotation terms in GO, it is required to 
apply GO to microarray gene expression data properly. 
Deciding which GO-based approach to apply mainly depends 
on the data we are dealing with, and it is also related to which 
kind of analysis we are performing. In following paragraphs, 
we discuss about the issues in terms of two aspects while 
applying gene ontology. 

A. How to use GO terms? 

As mentioned in section II, GO is a directed acyclic graph 
that consists of many annotation terms for known genes. Each 
term in GO can have more than one parent node or children 
node. The tracing path starting from a given node to the root 
represents a biological activity if one gene is annotated by this 
node. As a result, the commonest way to utilize gene ontology 
is to judge whether two genes have similar annotation terms in 
GO. For example, if we are going to identify whether two 
genes are co-expressed, we can make a query on GO to retrieve 

GO annotation terms for the two genes. The comparison of 
annotation terms for the two genes is then performed. If the GO 
terms for the two genes are the same or similar (a threshold for 
similarity is needed), we can create a table recording similar 
gene lists for each gene in microarray gene expression data 
based on gene ontology annotation terms. 

In some cases, GO terms are used just to mark whether two 
genes are similar or not. This dichotomy relies on a set of 
determining assessments. It may work well in some situations, 
but it is not a general method. Theoretically, genes should not 
be only defined as similar or not. Similarity degrees of each 
gene pair should be emphasized. For example, if there are three 
genes: Gene A, Gene B, and Gene C. Gene A and Gene B have 
the same GO terms at a specified level, while Gene B and Gene 
C have the same GO terms at a general level. From the 
definition of GO, we should regard the relation between Gene 
A and Gene B as closer than the relation between Gene B and 
Gene C. The various degrees of closeness are informative and 
should not be ignored. 

Another way to use GO terms is tracing the path from a 
given node to the root first, and then finding the occurrence of 
shared ancestors of two terms. If two genes are annotated by 
two terms that have a common ancestor in their parent nodes or 
even at higher levels, these two genes are somehow similar 
corresponding to the threshold the user defines. Data mining 
techniques such as association rules can be applied for this 
need. 

B. Which domain of GO terms should we focus on? 

Gene ontology annotation terms are with in three 
independent domains. These three domains consist of totally 
different annotation terms. As for the number of terms in these 
three domains, there are 18480 terms in biological process, 
2685 terms in cellular component, and 8687 terms in molecular 
function to date. Annotation terms in these three domains are 
considered as different aspects of gene activity. Molecular 
function focuses on the biological or biochemical activity at the 
molecular level. Biological process can be said as the 
combination of molecular function. It denotes a biological 
objective which genes contribute to. Cellular component 
records the place in cells where a gene product is active. 

In this paper, we simply define a GO similarity relationship 
based on the same GO annotation terms. Actually, before 
applying gene ontology it is essential to decide which domain 
of GO terms we are going to focus on. Microarray gene 
expression data come from a number of conditional 
experiments, and the experimental results may differ from 
distinguish domains in which the genes are involved. What 
counts is which kind of aspects the data come from. For 
example, if we are analyzing gene expression data involved in 
biological process domain, choosing GO terms in molecular 
function or cellular component is meaningless. As a result, it 
would be of no use if we do not use GO terms that correspond 
to our microarray gene expression data involved. Only by 
choosing suitable methods and corresponding GO terms of 
domains can facilitate the analysis of microarray gene 
expression data. 
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VI. CONCLUSION 

In this paper, we briefly describe the gene ontology 
structure and discuss about the important issues while applying 
gene ontology to microarray data analysis. We also propose a 
novel method combining DTW and GO to predict regulatory 
gene pairs in microarray time series data. Experimental results 
argue that gene ontology is the useful external information for 
genes within microarray time series data. We discuss the way 
how we can take gene ontology as a hint to help the analysis of 
microarray gene expression data. We believe that applying 
gene ontology in a proper manner facilitates the identification 
of informative genes in microarray data. 
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